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SUMMARY

We propose a robust interpolation scheme for non-overlapping two-level domain decomposition
methods applied to two-dimensional elliptic problems with discontinuous coefficients. This
interpolation is used to design a preconditioner closely related to the BPS scheme proposed in [1].
Through numerical experiments, we show on structured and unstructured finite element problems that
the new preconditioning scheme reduces to the BPS method on smooth problems but outperforms
it on problems with discontinuous coefficients. In particular it maintains good scalable convergence
behavior even when the jumps in the coefficients are not aligned with subdomain interfaces. Copyright
c© 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, there has been significant work on domain decomposition algorithms
for numerically solving partial differential equations. Several numerically scalable domain
decomposition preconditioners possess optimal convergence rates when used with Krylov
methods for given classes of elliptic problems. These optimality or quasi-optimality properties
are achieved with two-level preconditioners that use both local and global approximations
either in an additive or multiplicative way. The first two-level preconditioner (BPS) for
non-overlapping domain decomposition techniques was introduced by Bramble, Pasciak and
Schatz [1]. In their paper, the authors showed that for a uniformly elliptic operator the
condition number of the preconditioned system does not depend on the number of subdomains
and only weakly depends on the number of mesh points within subdomains. Other non-
overlapping domain decomposition preconditioners that possess similar optimality properties
include the vertex space [2, 3], the balancing Neumann-Neumann [4, 5, 6] and the FETI [7, 8]
methods. For most of these techniques, this property can also be extended to discontinuous
coefficient problems under the assumption that the jumps in the coefficients align with the
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interfaces between subdomains [9, 4, 10, 11]. While domain decomposition techniques can be
applied to situations where interfaces are not aligned, their performance is generally less good
than for constant coefficient problems. In this paper, we present a new interpolation operator
that is intended to address discontinuous coefficients where interfaces are not aligned with
subdomains. The new interpolation operator was first introduced in [12] and some preliminary
results on structured meshes were presented in [13]. To illustrate the benefits of the new
grid transfer method, it is used to modify a specific two-level BPS-like method. The original
preconditioner (referred to as BPS*) presented in [14] is intended to be representative of other
BPS-like methods. For smooth problems the new preconditioner reduces to regular BPS* but
it performs much better on problems where the jumps do not coincide with the boundary
of the subdomains. The robustness of the new preconditioner is assessed through extensive
numerical experiments both on structured and unstructured meshes.

The paper is organized as follows. In Section 2 we briefly present the BPS* preconditioner
and describe the interpolation operator in the framework of structured meshes. In Section 3
we propose a generalization of the interpolation for unstructured meshes. In both situations
we report numerical experiments to illustrate the attractive behavior and the robustness of
the new preconditioner compared with the BPS* method.

2. STRUCTURED MESHES

We consider the following 2nd order self-adjoint elliptic problem on an open polygonal domain
Ω included in IR2:{

− ∂
∂x

(a(x, y)∂v
∂x

)− ∂
∂y

(b(x, y)∂v
∂y

) = F (x, y) in Ω,

v = 0 on ∂Ω,
(1)

where a(x, y), b(x, y) ∈ IR2 are bounded positive functions on Ω. We discretize (1) via finite
elements resulting in a sparse symmetric and positive definite (possibly unstructured) matrix
equation

Au = f.

We assume that the domain Ω is partitioned into N non-overlapping subdomains Ω1, . . . ,ΩN

with boundaries ∂Ω1, . . . , ∂ΩN . Let B be the set of all indices of the discretized points which
belong to the interfaces between the subdomains and I be the set of all indices which correspond
to subdomain interiors. Grouping the points corresponding to B in the vector uB and those
corresponding to I in the vector uI induces the reordered problem:(

AII AIB

AT
IB ABB

) (
uI

uB

)
=

(
fI

fB

)
. (2)

Eliminating uI from the second block row of (2) leads to the following reduced equation for
uB :

SuB = fB −AT
IBA

−1
II fI , where S = ABB −AT

IBA
−1
II AIB (3)

is the Schur complement of the matrix AII in A, and is usually referred to as the Schur
complement matrix. The reduced system (3) is usually solved via a preconditioned conjugate
gradient (PCG) method as the Schur complement matrix inherits the symmetric positive
definitiveness property from A.

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 02:1–17
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GRID TRANSFER OPERATORS FOR TWO-LEVEL PRECONDITIONERS 3

To describe the Schur complement preconditioners, we need to define a partition of B. Let
Vi be the singleton sets that contain one index related to one cross point (where two or more
edges meet) and let V = ∪iVi be the set with all those indices; each cross point is represented
by an × in Figure 1. We define each edge by considering neighboring subdomains Ωj and Ωl

Figure 1. A 4× 4 box-decomposition with edge (•) and vertex (×) points.

for j 6= l, (j, l) ∈ {1, 2, . . . , N}2 where subdomain j and l are neighboring if ∂Ωj ∩ ∂Ωl is
nonempty and contains at least one point not in V . We define each edge Ei by

Ei = (∂Ωj ∩ ∂Ωl) \ V.
In Figure 1, the points belonging to the m edges (Ei)i=1,m are represented by •. We can thus
describe the set B as

B = (
m⋃

i=1

Ei) ∪ V, (4)

consisting of m edges and the cross points.
We now consider BPS-like preconditioners [1]. In this paper, we choose the BPS*

method [14]. This scheme is closely related to the classical BPS algorithm and so serves as
a good representative of BPS-like methods. It is important to understand that the operator
dependent interpolation discussed in this paper is not limited to this specific BPS* method and
is applicable to any BPS variant. The BPS* preconditioner can be briefly described as follows.
We first define a series of projection and interpolation operators. Specifically, for each Ei we
define an |Ei| × |B| matrix∗, Ri = REi

, as the standard point-wise restriction (or injection)
of nodal values to Ei. Its transpose extends grid functions in Ei by zero on the rest of the
interface B. Similarly we define the |V | × |B| matrix, RV , as the canonical restriction to V .
Thus, we set Sij ≡ RiSR

T
j and SV ≡ RV SR

T
V . To complete the two-level preconditioner, a

coarse grid operator must be defined. Assume that Ω1, ..., ΩN form the elements of a coarse
grid mesh, τH , with mesh size H. That is, a coarse grid mesh point, V̂j , is associated with each
fine grid vertex point, Vj , and two coarse grid points, V̂j and V̂k, are adjacent if and only if
there is an Ei that connects their corresponding fine grid points, Vj and Vk. An interpolation
operator is defined by injecting coarse grid values to the corresponding fine grid cross points

∗|.| denotes cardinality.

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 02:1–17
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and performing linear interpolation for each adjacent pair of coarse grid points along the edge
connecting them. This linear interpolation operator is denoted RT

l . Rl is a projection operator
and is the transpose of the interpolation operator. Finally, AH,l is the Galerkin coarse grid
operator

AH,l = RlAR
T
l (5)

defined on τH . With these notations the BPS* preconditioner is defined by

MBPS∗ =
∑
Ei

RT
i S

−1
ii Ri +RT

l A
−1
H,lRl, (6)

as described in [14]. Within this paper we consider the use of S−1
ii to simplify the comparisons

between methods. However, it should be noted that within practical computations, S−1
ii is

typically replaced with an inexpensive spectrally equivalent approximation (e.g. [15]). This
preconditioner (6) can be interpreted as a generalized block Jacobi scheme for the Schur
complement system (3) where the block diagonal preconditioning for SV V is omitted and a
coarse grid correction is added. The coarse grid term RT

l A
−1
H,lRl incorporates global coupling

between distant interfaces. This global coupling is critical for scalability. In particular, it has
been shown in [1] that when applying the original BPS technique to a uniformly elliptic
operator, the preconditioned system has a condition number

κ(MBPSS) = O(1 + log2(H/h)) (7)

where h is the mesh size. This result can be extended to the situation of discontinuous
coefficients under the assumption that the jumps occur at interfaces between subdomains [1].

In this paper, we replace AH,l by

ÃH,l = RlSR
T
l . (8)

It has been shown [1, 15] that in general for elliptic problems the operator AH,l is spectrally
equivalent to ÃH,l (in fact they are equal in some situations) and so it is possible to use
either AH,l or ÃH,l. In this text, we address only problems for which this spectral equivalence
between (5) and (8) is ensured. We generally find ÃH,l more robust when highly discontinuous
coefficients are present and so we use (8) for our convergence experiments though within
practical computations AH,l may be more attractive. Thus, a linear interpolation modified
BPS* scheme is given by

M̃BPS∗,l =
∑
Ei

RT
i S

−1
ii Ri +RT

l Ã
−1
H,lRl. (9)

This method will be compared to a preconditioner using operator dependent interpolation.
Specifically, a specialized interpolation transfer (operator dependent) that addresses jumps
that are not aligned with subdomain boundaries is defined in the next section. This operator
is denoted Rod and replaces Rl yielding an operator dependent version of a BPS* scheme

M̃BPS∗,od =
∑
Ei

RT
i S

−1
ii Ri +RT

odÃ
−1
H,odRod (10)

where
ÃH,od = RodSR

T
od.
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GRID TRANSFER OPERATORS FOR TWO-LEVEL PRECONDITIONERS 5

2.1. OPERATORS DEPENDENT INTERPOLATION

When uniform rectangular subdomains are used on a two-dimensional structured mesh, all the
edges Ei are aligned either with the x or the y axis. In this case, interpolation, RT

od, reduces
to a series of one-dimensional interpolations along either x or y grid lines. Therefore, we begin
by considering one-dimensional interpolation. Clearly grid points on each straight-line that
contain edges can be mapped to points on a line on the interval (0,1). We, therefore, consider
the one dimensional model problem

− d

dx
(a(x)

d

dx
u(x)) = f in (0,1),

u(x) = 0 at x=0 and 1.

(11)

In the discussion that follows, we will assume that A is discretized via linear finite elements in
order to simplify the presentation. Let H1(0, 1) be the standard Sobolev space on the interval
(0,1) and H1

0 (0, 1) its subspace whose functions vanish at x = 0 and x = 1. Given a grid
xh

j = jh, j = 0, ..., n on (0,1), define the fine grid linear finite element space to be

V h = {vh ∈ H1
0 (0, 1) : vh is linear on [xh

j , x
h
j+1], j = 0, ..., n− 1},

and denote the set of nodal basis functions by {φh
j }

n−1
j=1 ∈ V h where

φh
j (xh

k) =
{

1 if k = j,
0 if k 6= j.

Note that the φh
j ’s span V h. Let (xH

i )i=1,m be the set of coarse grid points defined by the
interfaces generated when partitioning (0, 1) into m + 1 non-overlapping subdomains. Define
the coarse subspace V H = span{φH

i ∈ V h : i = 1, . . . ,m} where the coarse grid nodal basis
functions satisfy

φH
j (xH

k ) =
{

1 if k = j,
0 if k 6= j.

Note that the φH
i ’s are linear on [xh

j , x
h
j+1] and are not yet fully specified. Since the {φh

i } are
linearly independent and the {φH

i } lie in V h, there exists a unique matrix R of size m× (n−1)
such that

[φH
1 ...φ

H
m] = [φh

1 ...φ
h
n−1]R

T .

Thus, defining the φH
i ’s is equivalent to building a restriction operator, R, and a corresponding

interpolation operator, RT .
We depict in Figure 2 an example of a coarse grid basis function that defines linear

interpolation. If we denote ũ ∈ Vh as the linear interpolant of the function u ∈ VH , the product
a∂ũ
∂x

is discontinuous at points where a() is discontinuous. Intuitively, the discontinuity of a∂ũ
∂x

is undesirable as this term is further differentiated in (11). The undesirablity of a discontinuous
a∂ũ
∂x

can also be motivated using energy minimization arguments (normally used in algebraic
multigrid discussions [16]). In particular, the coarse grid system should correct smooth error
components, e. These smooth components are typically characterized by small energy. That
is, <e,Ae> � <e, e> where A is scaled so ||A|| = 1 and < . , . > defines the usual vector

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 02:1–17
Prepared using nlaauth.cls



6 L. GIRAUD, F. GUEVARA VASQUEZ AND R. S. TUMINARO

s s s s s......................................................................
................................................................................

.......... ......................................................................
..........,

,
,

,
,

,
,,b

b
b

b
b

b
b

b
b

b

1
φH

2

xH
1 xH

3xH
2xh

4 xh
5 xh

6 xh
7 xh

8

Figure 2. coarse grid basis function φH
2 associated with the linear interpolation.

inner product. However, the discontinuity of a∂ũ
∂x

implies that a high energy error correction
will be applied. That is, <ũ,Aũ> is large where ũ is the interpolated coarse grid correction.
This is clearly contrary to what is needed and so the interpolation must be remedied to yield
a low energy correction. To build an interpolation operator that ensures the continuity of a∂ũ

∂x
even if a() is discontinuous, we define a new set of coarse grid basis functions (and thus a new
grid transfer operator). These are defined by solving the local problems in [xH

i−1, x
H
i ] :

− d

dx
(a(x)

d

dx
φH

i ) = 0 in [xH
i−1, x

H
i ] (12)

with
φH

i (xH
i−1) = 0 and φH

i (xH
i ) = 1.

In Figure 3, we depict the basis function φH
2 when the function a() is piecewise constant with

discontinuities at xh
5 and xh

7 .
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Figure 3. coarse grid basis function φH
2 associated with the operator-dependent interpolation.

The operator-dependent interpolation is numerically constructed by solving the linear system
arising from the discretization of (12) on each Ei. That is, interpolation for the two dimensional
problem is built by solving a series of one dimensional problems (one for each subdomain
interface). Each one dimensional horizontal edge problem is constructed by taking a(x, y) in
(1) and restricting it (injection) to the proper edge thereby defining a(x) in (12). A similar
procedure is performed on vertical edges using b(x, y). While we use injection, a(x) could
also be defined by averaging a(x, y) within a neighborhood of the interface. This averaging
would attempt to more accurately capture composite behavior. We have explored several
different averaging procedures and have not found these worthwhile. Averaging usually does

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 02:1–17
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GRID TRANSFER OPERATORS FOR TWO-LEVEL PRECONDITIONERS 7

not significantly improve convergence (except on carefully contrived examples) and costs more
to compute. For these reasons we do not explore averaging further in this paper.

The discretization of each one dimensional PDE (12) yields a tridiagonal linear system
with the following structure when the Dirichlet boundary conditions are included among the
unknowns:

Ai =



1 0
. . . . . . . . .

−a`− 1
2

(a`− 1
2

+ a`+ 1
2
) −a`+ 1

2

. . . . . . . . .
0 1

 (13)

where the (`+ 1)-th row is associated with the `-th interior vertex on Ei and

a`− 1
2

=
∫ xh

`

xh
`−1

a(x)5 φh
`−1 5 φh

` .

Lemma 1. The operator-dependent interpolation reduces to linear interpolation when a ≡ 1.

Proof
When a() ≡ 1, the solution to (12) such that φH

i (xH
i−1) = 0 and φH

i (xH
i−1) = 1 is

φH
i =

x− xH
i−1

xH
i − xH

i−1

which is the straight line that defines linear interpolation as depicted in Figure 2.

�

Lemma 2. The one dimensional operator-dependent interpolation defined by the solution
of (12) reduces to the multigrid energy minimization approach [17] or to the multigrid operator-
dependent interpolation when every other point is a coarse point (i.e. each subdomain contains
only one point).

Lemma 3. This new interpolation defines a partition of unity. That is,

RT
od1V = 1B, (14)

where the symbol 1V denotes the vectors of all 1’s on the coarse grid and 1B is the vector of
1’s on all the subdomain edges and cross points.

Proof
It is enough to show that

∑
i φ

H
i (x) = 1. That is, let ψH(x) =

∑
i φ

H
i (x). Using (12) with

1 ≤ i ≤ m, it follows that 
− d

dx
(a(x)

d

dx
ψH

i ) = 0 in [xH
i−1, x

H
i ]

ψH
i (xH

i−1) = 1, ψH
i (xH

i ) = 1.

Clearly, ψH = 1 is a solution and by uniqueness, ψH ≡ 1 on [xH
i−1, x

H
i ] and the result follows.

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 02:1–17
Prepared using nlaauth.cls
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�

It should be noted that this proof is essentially identical to the one given in [17, p. 1637]
for Lemma 3.2 with the exception that here the number of fine grid points within [xH

i−1, x
H
i ]

is arbitrary. This partition of unity is generally critical for good numerical convergence and
occurs in most multilevel methods: the Neumann-Neumann and balancing Neumann-Neumann
preconditioner [4, 5], etc. Connections between this grid transfer and standard operator
dependent multigrid transfers can be found in [12].

2.2. NUMERICAL EXPERIMENTS

To evaluate the sensitivity of the preconditioners to discontinuity, we consider (1) where the
coefficients a() and b() are defined in several different ways. In all of our examples, these
diffusion coefficients are piecewise constant functions. For the first two problems a() and b()
are given by

- Problem SD-F1: a() = b() =

 1 in R3,
102 in R2 ∪R4,
10−2 in R1 ∪R5.

- Problem SD-F2: a() = b() =

 1 in R3,
103 in R2 ∪R4,
10−3 in R1 ∪R5.

where the R’s are given by Figure 4. The third problem uses

- Problem SD-R: a() = b() =

 10−1 in R1,
10−2 in R2,
101 in R3 ∪R4 ∪R5 ∪R6.

where the R’s are given by Figure 5. For sake of completeness we also consider the classical
Poisson problem defined by a() = b() = 1.

@
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Figure 4: Example 1 - Flag Figure 5: Example 2 - Region

For all these experimental results, structured meshes are used along with uniform square
subdomains. The convergence of the preconditioned conjugate gradient method is attained

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 02:1–17
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# subdomains 4× 4 8× 8 16× 16 32× 32
M̃BPS∗,l 13 17 17 15
M̃BPS∗,od 13 17 17 15

Table I. # iterations to solve the Poisson problem on structured meshes.

SD-F1 problem
# subdomains 4× 4 8× 8 16× 16 32× 32

M̃BPS∗,l 26 33 32 32
M̃BPS∗,od 22 22 27 23

SD-F2 problem
# subdomains 4× 4 8× 8 16× 16 32× 32

M̃BPS∗,l 28 36 36 38
M̃BPS∗,od 23 24 31 26

SD-R problem
# subdomains 4× 4 8× 8 16× 16 32× 32

M̃BPS∗,l 18 35 37 37
M̃BPS∗,od 17 24 22 19

Table II. # iterations to solve PDEs with discontinuities on structured meshes.

when the 2-norm of the residual normalized by the 2-norm of the right hand side is less
than 10−8. The experiments were run on the ASCI Red machine. In all these simulations,
each subdomain is assigned to a different processor. The linear systems associated with the
coarse space are much smaller than the linear systems associated with the local Dirichlet
problems associated with each subdomain. Therefore, we construct the coarse matrix ÃH,−
once, assemble and factor it on all the processors so that we can redundantly perform in parallel
its solution via forward/backward substitution at each preconditioned conjugate gradient
iteration. One advantage of this redundant calculation is it avoids some communication when
solving the coarse problem. More details on the parallel implementation can be found in [18].

We study the numerical scalability of the preconditioners by investigating the dependence of
the convergence on the number of the subdomains while keeping constant the number of grid
points per subdomain (i.e. 256× 256 mesh for each subdomain, that is H

h = 256). The initial
guess x0 for the conjugate gradient iterations is the null vector and the righthand side is given
by a constant vector. In Table I, we give the results for the Poisson problem. As expected, the
behavior of the two variants does not depend on the number of subdomains as predicted by (7)
and as indicated by Lemma 1. In Table II we report the number of iterations on heterogeneous
problems. Notice that for the test examples the discontinuities in the coefficients a() and
b() are not aligned with the interface of the square subdomains and consequently no theory
applies. These results reveal that M̃BPS∗,l is less efficient than M̃BPS∗,od. Further, M̃BPS∗,od

is numerically scalable (as is M̃BPS∗,l) and follows a behavior predicted by (7) even though
this theory does not apply.

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 02:1–17
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3. GENERALIZATION TO UNSTRUCTURED MESHES

3.1. DEFINITION OF THE INTERPOLATION OPERATOR

For unstructured meshes, the interfaces between subdomains are not necessarily aligned with
either the x or y axis. Therefore, the one-dimensional PDE solution procedure involving either
the coefficient function a() or b() to define (12) cannot be used anymore. However, we can still
construct a linear system similar to (13) to build an interpolation operator. In particular for
each interface, we consider all the elements containing an edge along the interface. For each
element, we take its stiffness matrix and algebraically eliminate (i.e. reduce out) all unknowns
that do not lie on the interface. Then, for each interface a matrix is assembled that includes
contributions from all its reduced stiffness matrices. Finally, the two matrix rows corresponding
to the end points (i.e. the two coarse grid points) are replaced by Dirichlet boundary conditions.
It is important to notice that by reducing out the noninterface unknowns, a tridiagonal matrix
is obtained. We depict in Figure 6 an example interface for an unstructured mesh. The shaded
elements are those used to construct the tridiagonal system. For the interpolant corresponding
to the left coarse grid point, the right hand side contains a ‘one’ at the left Dirichlet condition, a
‘zero’ at the right Dirichlet condition and ‘zeros’ for all other equations. Notice that this linear
system effectively coincides to the original PDE on a strange domain with Neumman boundary
conditions everywhere except at the two end points where Dirichlet boundary conditions are
enforced. This use of local stiffness matrices has been found beneficial in other multilevel
methods such as the AMGe algebraic multigrid algorithm [19], the FETI method [7], and
the balancing Neumman-Neumman scheme [5]. In all of these algorithms, the local stiffness
matrices provides a local submatrix which is closely connected to the original physical problem
(e.g. a substructure).

Figure 6. An interface on unstructured meshes.

Lemma 4. The operator-dependent interpolation constructed on unstructured meshes defines
a partition of the unity.

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 02:1–17
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GRID TRANSFER OPERATORS FOR TWO-LEVEL PRECONDITIONERS 11

Proof
Let A(s) be the elementary k × k stiffness matrix associated with element s. This matrix has
the form

A(s) =
(
A`` A`e

Ae` Aee

)
where the first block of rows are associated with noninterface nodes and the second block of
rows correspond to the interface. For any element, s, the rank of A(s) is equal to k − 1 and
its null space is spanned by the constant vector (i.e. A(s)1k = 0k). This implies that the local
Schur complement

Aee −Ae`A
−1
`` A`e

is also rank deficient with a null space still spanned by the constant vector. Clearly, this
continues to hold when assembling the reduced stiffness matrices. That is, any constant vector
is a solution to the assembled reduced system with a zero righthand side and no Dirichlet
boundary conditions. Imposing Dirichlet boundary conditions equal to one at the endpoints
(i.e. interpolating the coarse grid vector 1V) forces the unique solution to be the vector of all
ones along the interface.

�

Remark 1. On structured meshes decomposed into uniform rectangles, the above definition
leads to the same operator-dependent interpolation defined in the previous section for structured
meshes.

While our algorithm eliminates noninterface nodes at the elementary level (i.e. before
assembling), this elimination could be done after assembling. This would correspond to defining
interpolation as the solution of

− ∂
∂x

(a(x, y)∂v
∂x

)− ∂
∂y

(b(x, y)∂v
∂y

) = 0 on Ω̂,

∂v
∂~n

= 0 on ∂Ω̂ \{Vi, Vj},

v = 1 at {Vi}

v = 0 at {Vj}

(15)

where Ω̂ is the union of the elements that have an edge along the interface and {Vi, Vj} refers
to the two cross points corresponding to the edge endpoints (see Figure 6). This possibility
has not been explored. Our experiences with averaging on structured meshes lead us to believe
that possible benefits do not outweigh the additional costs.

3.2. NUMERICAL EXPERIMENTS

To investigate the robustness and the scalability of the preconditioners we consider three model
problems by defining the diffusion coefficients a() and b() in (1) as piecewise constant functions
in (−1, 1)2 as depicted in Figures 7, 8 and 9. Using these notations we define a set of model
problems with discontinuous coefficients as follows:
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Figure 7. Example 3 - Band.

d

c

e

gf

Figure 8. Example 4 - Radar.

w6w1

Figure 9. Example 5 - Ring.

- Problem UD-B: a() = b() =


10−2 in R1 ∪R7,
102 in R2 ∪R6,
10−3 in R3 ∪R5,
103 in R4;

where the Ri are defined in Figure 7,

- Problem UD-Ra: a() = b() =


10−3 in R1,
102 in R2,
10 in R3,
10−2 in R4,
10−1 elsewhere;

where the Ri are defined in Figure 8,
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- Problem UD-Ri: a() = b() =



103 in R1,
102 in R2,
101 in R3,
10−3 in R4,
10−1 in R5,
1 in R6,
10−1 elsewhere;

where the Ri are defined in Figure 9. The rings are labeled consecutively starting with the
innermost ring labeled as R1.

We consider the following geometries and unstructured meshes to study the scalability of
the preconditioners:

rsq Each subdomain is a rounded square as depicted in Figure 10
(i.e. a square where the sides have been replaced by arcs except
on the domain boundary).

par Each subdomain is a parallelogram (see Figure 11).

rpar Each subdomain is a “rounded parallelogram” as depicted in
Figure 12 (i.e. a parallelogram where the sides have been
replaced by arcs except on the domain boundary).

Note that all the meshes preserve the external domain geometry. That is, the entire
composite domain Ω remains the same when the number of subdomains changes.

The mesh generation and the finite element discretization of (1) are done using MATLAB’s
PDE toolbox. In our implementation, building M̃BPS∗,od costs a little bit more than
constructing M̃BPS∗,l due to a couple of additional nearest neighbor communications. The
computational cost for applying both methods, however, is identical. Solutions are obtained
in parallel on the ASCI Red machine. Even though on unstructured meshes it is more difficult
to control the ratio H

h , we attempt to keep it constant as well as maintain a good aspect ratio
for the subdomains. Therefore, we can still study the scalability of the preconditioners varying
the number of subdomains while the ratio H

h remains the same. Table III gives the range of
number of points per subdomain for each mesh.

Domain Decomposition approx. range of pts/sd
Parallelograms (par) 890 - 900
Round Squares (rsq) 710 - 860
Round Parallelograms (rpar) 780 - 1100

Table III. Approximate range of points per subdomain for the considered domain decompositions.

We first report in Table IV the numerical behavior of the two preconditioners for the Poisson
problem. It can be observed that for that problem, the two preconditioners have similar
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Figure 10. rsq unstructured mesh: a 4× 4 decomposition.
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Figure 11. par unstructured mesh: a 4× 4 decomposition.
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Figure 12. rpar unstructured mesh: a 4× 4 decomposition.
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Round square mesh (rsq)
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 16 17 16
M̃BPS∗,od 18 18 17

Parallelogram mesh (par)
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 14 14 13
M̃BPS∗,od 14 14 13

Round parallelogram mesh (rpar)
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 20 19 18
M̃BPS∗,od 21 21 20

Table IV. # iterations to solve the Poisson problem on unstructured meshes.

D-B problem
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 27 41 35
M̃BPS∗,od 18 17 16

D-Ra problem
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 31 38 42
M̃BPS∗,od 20 23 23

D-Ri problem
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 32 44 33
M̃BPS∗,od 13 15 16

Table V. # iterations to solve PDEs with discontinuities on unstructured round square mesh (rsq).

convergence behavior. In addition the convergence is independent of the number of subdomains
as predicted by (7). In Tables V-VII we report the number of PCG iterations for M̃BPS∗,l and
M̃BPS∗,od on discontinuous problems discretized on unstructured meshes. For each mesh, we
vary the number of subdomains from 16 to 256. As it can be observed, M̃BPS∗,od performs
much better than M̃BPS∗,l; around 50% less iterations on average for 256 subdomains. It should
be mentioned that both methods have the same computational complexity per iteration and
that the extra set-up time to build the operator-dependent interpolation (tridiagonal solutions)
is negligible.

To simplify the exposition, all of our experiments use the exact S−1
ii to define the local

components of the preconditioners. For practical reasons, it might be preferable to consider
less expensive alternatives. We have performed experiments with an earlier version of this
work [12] on structured meshes using an efficient local component [20] computed via a variant of
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D-B problem
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 22 30 31
M̃BPS∗,od 18 20 12

D-Ra problem
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 24 40 38
M̃BPS∗,od 21 19 21

D-Ri problem
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 21 27 32
M̃BPS∗,od 15 17 15

Table VI. # iterations to solve PDEs with discontinuities on unstructured parallelogram mesh (par).

D-B problem
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 30 34 37
M̃BPS∗,od 22 21 20

D-Ra problem
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 31 50 52
M̃BPS∗,od 25 25 35

D-Ri problem
# subdomains 4× 4 8× 8 16× 16

M̃BPS∗,l 28 38 45
M̃BPS∗,od 22 26 22

Table VII. # iterations to solve PDEs with discontinuities on unstructured round parallelogram mesh
(rpar).

the probing technique [21]. These experiments show that M̃BPS∗,od still outperforms M̃BPS∗,l
when an efficient local preconditioner replaces S−1

ii [13].

4. CONCLUDING REMARKS

We proposed a new interpolation operator to define a closely related variant of the BPS*
preconditioner. This operator-dependent interpolation is designed to tackle problems where
the PDEs coefficients are either discontinuous or have large variation along the interfaces
between the subdomains. The definition of this interpolation is natural on structured meshes
with uniform rectangular subdomains and we proposed a generalization to unstructured
meshes. This generalization preserves the constant function while taking into account possible
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discontinuities. The unstructured grid interpolation was inspired by AMGe and also by the
fact that it reduces to the original operator dependent interpolation on uniform meshes.

In this paper, we have considered the two dimensional case in order that it be fully
understood first. These techniques could be used to modify BPS-like preconditioners for three
dimensional problems. The key issue in three dimensions is that the subdomain interfaces are
faces and so the one dimensional interpolation must be generalized to two dimensions. This
would correspond to taking the elementary stiffness matrices adjacent to the faces and reducing
out noninterface unknowns. The operator dependent interpolation is then determined by
solving the resulting two dimensional PDE discretizations on each face. Given the connections
to AMGe which has been developed for three dimensional problems, we anticipate that
this would yield an effective method. Unlike AMGe, however, complications associated with
applying the algorithm on coarser grids recursively do not arise due to the two-level nature of
these domain decomposition preconditioners.

Extensive experiments illustrate the numerical scalability of the BPS* method on
discontinuous coefficient problems even though assumptions used to develop the theory are
violated. In practice both linear interpolation as well as operator dependent interpolation
yield scalable methods. While both are scalable, however, the operator dependent scheme
significantly outperforms the linear interpolation method with similar computational
complexity.
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